skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Howard, HC"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is emerging recognition that crystalline defects such as grain boundaries and dislocations can host structural and chemical environments of their own, which reside in local equilibrium with the bulk material. Targeting these defect phases as objects for materials design would promise new avenues to maximize property gains. Here, we provide experimental proof of a dislocation-templated defect phase using a processing strategy designed to engender defect phase transitions in a nickel-based alloy and demonstrate dramatic effects on strengthening. Following heat treatments designed to encourage solute segregation to dislocations, regions with introduced dislocation populations show evidence of nanoscale ordered domains with a L1 structure, whereas dislocation-free regions remain as a solid solution. Site-specific spherical nanoindentation in regions hosting dislocations and their associated ordered nanodomains exhibit a 40% increase in mean pop-in load compared to similar regions prior to the segregation heat treatment. Strength estimates based on random solute atmospheres around dislocations are not sufficient to predict our measured strengths. Our mechanical measurements, in tandem with detailed electron microscopy and diffraction of the ordered domains, as well as characterization of dislocations in the vicinity of the nanodomains, establish the defect phase framework via direct observations of chemical and structural ordering near dislocations and its potential for offering favorable properties not achievable through conventional materials design. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026